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Abstract A numerical approach to design control invariant sets for constrained nonlinear
discrete-time systems with guaranteed optimality is proposed in this paper. The addressed
approach is based on the fact that zonotopes are more flexible for representing sets than boxes
in interval analysis. Then the solver of set inversion via interval analysis is extended to set
inversion via zonotope geometry by introducing the novel idea of bisecting zonotopes. The
main feature of the extended solver of set inversion is the bisection and the evolution of a
zonotope rather than a box. Thus the shape of admissible domains for set inversion can be
broadened from boxes to zonotopes and the wrapping effect can be reduced as well by using
the zonotope evolution instead of the interval evolution. Combined with global optimization
via interval analysis, the extended solver of set inversion via zonotope geometry is further
applied to design control invariant sets for constrained nonlinear discrete-time systems in a
numerical way. Finally, the numerical design of a control invariant set and its application to
the terminal control of the dual-mode model predictive control are fulfilled on a benchmark
Continuous-Stirred Tank Reactor example.

Keywords Set inversion · Global optimization · Interval analysis · Zonotope geometry ·
Control invariant sets

1 Introduction

Set invariance plays a significant role in many practical problems concerning constrained
control, robustness synthesis and constrained optimization [1,2]. For example, in the dual-
mode model predictive control (MPC), a terminal control invariant set along with a local
stabilizing linear feedback control law is usually needed to be designed in advance for the
terminal control mode once the system state has been driven into the terminal set through
the receding horizon control mode [3,4]. The optimality of the designed control invariant
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set can be judged according to its volume, where a larger control invariant set is preferred
for a shorter control horizon and an easier stabilization [5]. The analytical design of the
maximal control invariant set along with a local stabilizing linear feedback control law for
a constrained nonlinear discrete-time system is quite challenging and usually the obtained
control invariant set is restricted to be an ellipsoid or a low-complexity polytope [5–10].
Approaches based on linear dynamic approximation together with Lipschitz bounds on the
errors of approximation were discussed in [7,8] to obtain terminal control invariant ellipsoids
for constrained nonlinear systems. Another approach to obtain a terminal control invariant
ellipsoid was based on a linear difference inclusion of the original nonlinear system [9]. In
[10], the related local stabilizing linear feedback control law was designed using the LQ
method for the linearized system of the original nonlinear system and the associated terminal
control invariant ellipsoid was obtained through an optimization. In [5], a low-complexity
control invariant polytope together with a local stabilizing linear feedback control law was
also designed in an optimal way for an input-affine nonlinear system, where the advantage
of a control invariant polytope over a control invariant ellipsoid in terms of volume was
demonstrated. The design of a control invariant low-complexity polytope with respect to a
feedback linearizing control law for input-affine nonlinear systems was further proposed in
[6], where the designed invariant set along with the feedback linearizing control law was
used in the terminal control of the dual-mode MPC. In fact, polytopes are usually the natural
expression of physical constraints on state and control variables leading to a more flexible
and pertinent description of corresponding control invariant sets [1]. However, the design of
a relatively complex control invariant polytope, which is more likely to have a bigger volume,
for a general constrained nonlinear discrete-time system is still an open problem.

The design of a control invariant set for a general constrained nonlinear discrete-time
system is closely related to the test of control invariance for a candidate set in the viewpoint
of set computation. A set is control invariant for a discrete-time control system means that
the dynamic evolution of the system under the related control law is always within the given
set. Thus the test of control invariance for a given set is a specific set inversion problem [11],
where the admissible domain and the range for the dynamic function are the same. The solver
of set inversion via interval analysis was proposed in [12] as a method of set computation
and it has been widely applied to find feasible solutions concerning nonlinear inequalities
[13,14]. The solver needs an initial admissible interval vector or a box from which to search
all feasible solutions through bisections and selections. However, the admissible domains of
practical problems such as the test of control invariance are not always boxes and additional
linear constraints are usually imposed on function variables. In such a scenario, the resulting
admissible domains are polytopes or zonotopes rather than boxes and the existing solver of
set inversion via interval analysis are not suitable to deal with such kind of set inversion
problems in a direct way.

This paper aims to provide a numerical method to design control invariant sets for gen-
eral constrained nonlinear discrete-time systems with guaranteed optimality. It is realized
by extending the solver of set inversion via interval analysis to set inversion via zonotope
geometry, where both the bisection and the evolution are based on zonotopes instead of inter-
val vectors or boxes. Thus the admissible domains for set inversion can be broadened from
boxes to zonotopes, which are more flexible than boxes for representing sets and fulfilling set
computation [15]. Global optimization via interval analysis is also applied to find the con-
trol invariant set with the maximal volume through searching among all the feasible control
invariant sets. The paper is organized as follows: the problem considered is stated in Sect. 2;
interval analysis is introduced briefly in Sect. 3; basic concepts and operations of interval
analysis are extended to zonotope geometry in Sect. 4; the extended solver of set inversion
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via zonotope geometry is presented in Sect. 5; using set inversion via zonotope geometry
as well as global optimization via interval analysis for the design of control invariant sets is
addressed in Sect. 6; an illustrative example for the proposed numerical approach to design
a control invariant set for a constrained nonlinear discrete-time system as well as the appli-
cation of the designed control invariant set to the terminal control of the dual-mode MPC is
given in Sect. 7; and finally, some conclusions are drawn in Sect. 8.

2 Problem statement

Consider the general constrained nonlinear discrete-time system:

xk+1 = f(xk, uk), k = 0, 1, . . . , (1)

where xk ∈ X ⊂ R
n is the system state and uk ∈ U ⊂ R

m is the control input. The set
X and the set U are compact. The target is to design an optimal control invariant zonotope
Z ⊆ X along with a local stabilizing linear feedback control law uk = kxk , which satisfies
the following condition:

xk+1 = f(xk, kxk) ∈ Z, kxk ∈ U, ∀xk ∈ Z. (2)

The related local stabilizing linear feedback control law uk = kxk is to be designed in advance
using the LQ method for the linearized system of the original nonlinear system [10].

The test of control invariance for a given set and a related control law can be transformed
to be a set inversion problem concerning set computation. For a possibly nonlinear function
f(x) : R

n → R
m with the admissible domain x ∈ X and the known range T ⊂ R

m , set
inversion is the characterization [11]:

X = {x ∈ X ⊂ R
n |f(x) ∈ T} = f−1(T). (3)

According to the condition of control invariance in (2), the control invariance of a given
zonotope Z along with a related local stabilizing linear feedback control law uk = kxk for
the system (1) is implied by the following result of the set inversion problem (3):

X = Z = T = X, (4)

where uk = kxk ∈ U,∀xk ∈ Z. This means that the given zonotope is treated as the
admissible domain and the solution set for (3) is the same to the admissible domain as
well as the known range. Thus the design of an optimal control invariant zonotope Z can be
transformed to be the test of control invariance and the selection of an optimal control invariant
zonotope among a number of feasible control invariant zonotopes, where the bisection and
the selection of zonotopes are concerned instead of boxes during the test of control invariance
of a given zonotope using set computation.

3 Interval analysis

The initial idea of interval analysis is to enclose real numbers in intervals and real vectors
in boxes as a method of considering the imprecision of representing real numbers by finite
digits in numerical computers. Interval analysis has become a fundamental numerical tool
for representing uncertainties or errors, proving properties of sets, solving sets of nonlin-
ear equations or inequalities and designing some global optimization algorithms. The key
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concepts of interval analysis are interval arithmetic and inclusion function, whose definitions
are as follows [11]:

Interval arithmetic: Interval arithmetic is a special case of computation on sets, which
includes real compact intervals [a, b] = {x ∈ R|a ≤ x ≤ b}, where a ∈ R, b ∈ R and
a ≤ b, real compact interval vectors Xn×1 and real compact interval matrices Xn×m . The four
elementary arithmetic operations (+,−,×,÷) are extended to intervals. Concretely, for any
such binary operator, denoted by ◦, performing the operation associated with ◦ on the intervals
[a, b] and [c, d] means computing [a, b] ◦ [c, d] = [{x ◦ y ∈ R|x ∈ [a, b], y ∈ [c, d]}],
where [·] denotes the convex hull of {x ◦ y ∈ R|x ∈ [a, b], y ∈ [c, d]}. Correspondingly, the
set of all interval vectors in the domain of R

n is denoted to be I(Rn).
Inclusion function: Consider a function f from R

n to R
m , the interval function F from

I(Rn) to I(Rm) is an inclusion function for f if ∀X ∈ I(Rn), f(X) ⊆ F(X). The natural
inclusion function of f(X) can be obtained by replacing each occurrence of every variable
with the corresponding interval variable, by executing all operations according to interval
arithmetic and by computing intervals enclosing the range of standard functions.

The fundamental concepts of interval analysis can be integrated to set up various algo-
rithms for solving set inversion, global optimization and minimax optimization problems in a
guaranteed numerical way [11,16]. A basic operation within these solvers is to bisect an inter-
val vector into two sub-interval vectors. Taking the interval vector X = [a1, b1]×· · ·×[an, bn]
as an example, its width is denoted to be:

Width(X) = max
i=1,...,n

|ai − bi |, (5)

and the index j is denoted to be:

j = min
i=1,...,n

{i |(|ai − bi |) = Width(X)}, (6)

then the bisection Bisect(X) returns two sub-interval vectors LX and RX (L for Left and
R for Right):

⎧
⎨

⎩

LX = [a1, b1] × · · ·
[
a j ,

(a j +b j)
2

]
× · · · [an, bn]

RX = [a1, b1] × · · ·
[
(a j +b j)

2 , b j

]
× · · · [an, bn].

(7)

The solver of set inversion via interval analysis is an algorithm of set computation aiming
to find all feasible solutions X satisfying f(X) ⊆ T in (3), where the admissible domain X of
f(x) is usually assumed to be an interval vector or a box. It is fulfilled in a numerical way by
bisecting the admissible domain X into subboxes, computing the inclusion function F of f(x)

for each subbox via interval arithmetic, and finally selecting all feasible subboxes through
comparing the resulting image of the inclusion function F for each subbox with the known
range T [11].

4 Zonotope geometry

This section introduces zonotope geometry with comparison to interval analysis, i.e., the
basic concepts of zonotope geometry are derived by extending their counterpart concepts
of interval analysis and zonotope geometry is treated as an extension of interval analysis in
geometry.
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4.1 Zonotope definition

A zonotope is a centrally symmetric convex polytope and it is closely related to interval
analysis. Given a vector p ∈ R

n and a matrix H ∈ R
n×m , the zonotope Z of order n × m is

the set:

p ⊕ HBm = {p + Hz|z ∈ Bm}, (8)

where Bm is an interval vector (i.e., aligned box) composed of m unitary intervals B = [−1, 1]
and ⊕ is the Minkowski sum of sets. Assume that H = [h1 · · · hm], then the zonotope can
also be regarded as a set spanned by the column vectors of H , which are also called line
segment generators:

Z =
{

p +
m∑

i=1

αi hi | − 1 ≤ αi ≤ 1

}

. (9)

Geometrically, the zonotope Z is the transferred Minkowski sum of the line segments
defined by the columns of the matrix H to the central point p. The zonotope Z becomes a
simple parallelotope when the matrix H ∈ R

n×m is invertible. More specifically, the zonotope
Z is simplified to be an interval vector as well as a box when H is a diagonal matrix or when
m = 1. The mathematical concept of zonotopes has not yet been widely used explicitly in the
control literature although zonotopes have previously been applied to bound system states
in [17–19]. However, its implicit form, i.e., the Minkowski sum of sets, has already been
widely applied to approximate various kinds of invariant sets such as the minimal robust
positively invariant set and the minimal disturbance invariant set in a recursive way for linear
discrete-time systems [2,20]. Here zonotopes are to be explored further to obtain the maximal
control invariant zonotope in a numerical way for general constrained nonlinear discrete-time
systems.

4.2 Zonotope construction

The list of line segment generators is an efficient implicit representation of a zonotope. Using
the implicit representation, set operations such as the Minkowski sum and difference are then
trivial. However, the explicit representation of a zonotope is needed for some operations such
as the judgement of inclusion and exclusion of a polytope to a zonotope. The explicit represen-
tation of a zonotope is the zonotope construction problem aiming to list all extreme points of
a zonotope defined by its line segment generators, which could be computationally intensive
for high-dimensional cases. A relatively efficient algorithm was proposed in [21] to address
the zonotope construction problem, where the addition of line segments was replaced by the
addition of convex polytopes. For example, the construction of the zonotope Z = p ⊕ HB6,

where p =
[

2
2

]

and H =
[

0.4414 −0.5855 −0.0484 0.2570 0.2293 0.1498
−0.0016 −0.3930 0.3526 −0.2396 0.4257 −0.3117

]

, can

be transformed to be the Minkowski sum of three simpler zonotopes, i.e., Z = Z1 ⊕Z2 ⊕Z3,

where Z1 =
[

2
2

]

+
[

0.4414 −0.5855
−0.0016 −0.3930

]

B2, Z2 =
[−0.0484 0.2570

0.3526 −0.2396

]

B2 and Z3 =
[

0.2293 0.1498
0.4257 −0.3117

]

B2. Thus the zonotope Z can be constructed explicitly with reduced

dimensionality and it can be plotted as well using polytope geometry softwares such as
Multi-Parametric Toolbox [22], which is shown in Fig. 1.
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Fig. 1 An example of zonotope
construction

4.3 Zonotope bisection

Similar to an interval vector or a box, a method is also proposed to bisect a zonotope in this
subsection. Taking the zonotope Z = p ⊕ HBm as an example, where p ∈ R

n, H ∈ R
n×m

and m ≥ n, the maximum absolute value among all elements hi j in H is denoted to be:

Max(H) = max
i=1,...,n, j=1,...,m

|hi j |, (10)

and the index k is denoted to be:

k = min
j=1,...,m

{ j |(|hi j |) = Max(H), i = 1, . . . , n}. (11)

Then the zonotope Z can be bisected along the line segment generator hk , which is addressed
in Theorem 1.

Theorem 1 (Zonotope bisection) The bisection Bisect(Z) along the line segment gen-
erator hk returns two sub-zonotopes LZ = (p − hk

2 ) ⊕ [h1 · · · hk
2 · · · hm]Bm and RZ =

(p + hk
2 ) ⊕ [h1 · · · hk

2 · · · hm]Bm.

Proof Since Z = p ⊕ [h1 · · · hk · · · hm]Bm , then Z = p ⊕ [h1 · · · hk · · · hm] [[−1, 1]1 · · ·
[−1, 0]k · · · [−1, 1]m]T ∪ p ⊕[h1 · · · hk · · · hm][[−1, 1]1 · · · [0, 1]k · · · [−1, 1]m]T = LZ ∪
RZ, whereLZ = (p− hk

2 )⊕[h1 · · · hk
2 · · · hm]Bm andRZ = (p+ hk

2 )⊕[h1 · · · hk
2 · · · hm]Bm .

��
Taking the zonotope shown in Fig. 1 as an example, the proposed bisection Bisect(Z)

returns two sub-zonotopes, which are shown in Fig. 2. It can be seen that the bisection is
not complete for the zonotope of order 2 × 6. The reason for the overlapping of LZ and
RZ is that the line segment generators h1, . . . , h6 are redundant or not linearly independent
and then the rank of the intersection LZ ∩ RZ can be 2. However, for a zonotope Z with
linearly independent line segment generators, the bisection is complete, which is addressed
in Theorem 2.

Theorem 2 (Complete bisection) For a zonotope Z = p ⊕ HBn, where p ∈ R
n, H ∈ R

n×n

and Rank(H) = n, the defined bisection is complete, i.e., LZ and RZ only share a face
of dimension n − 1.
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Fig. 2 Bisection of a zonotope
with redundant line segment
generators

Proof For Z = {p + ∑n
i=1 αi hi | − 1 ≤ αi ≤ 1}, assume that there exist −1 ≤ αL

1 ≤
1, . . . ,−1 ≤ αL

k ≤ 0, . . . ,−1 ≤ αL
n ≤ 1 and −1 ≤ αR

1 ≤ 1, . . . , 0 ≤ αR
k ≤ 1, . . . ,−1 ≤

αR
n ≤ 1, s.t. p− hk

2 +∑k−1
i=1 αL

i hi +αL
k

hk
2 +∑n

i=k+1 αL
i hi = p+ hk

2 +∑k−1
i=1 αR

i hi +αR
k

hk
2 +

∑n
i=k+1 αR

i hi , then
∑k−1

i=1 (αL
i − αR

i )hi + (αL
k − αR

k − 2)
hk
2 + ∑n

i=k+1(α
L
i − αR

i )hi = 0
while Rank(H) = n, so αL

k = 1, αR
k = −1, i.e., LZ and RZ only share a face of dimension

n − 1. ��
4.4 Zonotope inclusion

Using zonotopes, Kühn developed a procedure to bound the orbits of discrete-time dynamic
systems with a guaranteed sub-exponential overestimation. The following definition intro-
duces the zonotope inclusion operator of Kühn’s method [15].

Definition 1 (Zonotope inclusion) Consider a family of zonotopes represented by Z = p ⊕
MBm , where p ∈ R

n is a real vector and M ∈ I(Rn×m) is an interval matrix. A zonotope
inclusion, denoted by �(Z), is defined by:

� (Z) = p ⊕ [Mid(M) G]
[

Bm

Bn

]

, (12)

where Mid(M) is the centered-point matrix of M and G ∈ R
n×n is a diagonal matrix that

satisfies:

Gii =
m∑

j=1

Diam(Mi j )

2
, i = 1, . . . , n, (13)

where Diam(Mi j ) is the length of the interval Mi j . Under these definitions, it results that:
Z ⊆ �(Z).

Given a possibly nonlinear function f(x) : R
n → R

n, x ∈ X = p ⊕ MBm , its centered
inclusion function Fc(X ) : f(X ) ⊆ Fc(X ) can be deduced by the mean-value theorem
[11], i.e.,

Fc(X ) � f(p) + �xf(X )(X − p), (14)

where �xf(X ) is the Jacobian of f(X ) and X −p = MBm . Thus the centered inclusion func-
tion Fc(X ) of f(x) turns out to be a family of zonotopes represented by Z = pc ⊕ McBm ,
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Fig. 3 The interval evolution vs the zonotope evolution

where pc = f(p) and Mc = �xf(X )M , which can be further bounded by its correspond-
ing zonotope inclusion �(Z). This is the primary principle of Kühn’s method to bound
the evolution of dynamic systems using zonotopes, where centered inclusion functions are
applied instead of natural inclusion functions. The reduced wrapping effect can be seen in an
illustrative example shown in Fig. 3, where the interval evolution and the zonotope evolution
of four steps for the nonlinear discrete-time system discussed in [5] with the same control
sequence and the same initial state domain are compared.

5 Set inversion via zonotope geometry

Given a possibly nonlinear dynamic system f(x), a zonotope X as the admissible domain
and the range T, the solver of set inversion via zonotope geometry is listed in Algorithm I,
where ε is the bound of error tolerance and �X , �b

X are to store the feasible sub-zonotopes
and the neighboring sub-zonotopes with Max(Hi ) < ε to all the feasible sub-zonotopes,
respectively.

Algorithm I: Set Inversion Via Zonotope Geometry (SIVZG)

1. Initialize Stack = X and �X = �b
X = ∅;

2. while Stack �= ∅
3. Pop out a zonotope Xi = pi ⊕ Hi Bm from Stack;
4. if �(Fc(Xi )) ⊆ T, �X = �X ∪ Xi and return to 2;

5. elseif Max(Hi ) < ε, �b
X = �b

X ∪ Xi and return to 2;

6. elseif �(Fc(Xi )) ∩ T = ∅, discard Xi and return to 2;

7. else

8. Bisect Xi to LXi and RXi, push them on Stack;
9. endif

10.endwhile

The solver of set inversion via zonotope geometry is similar to the solver of set inver-
sion via interval analysis and only the bisection and the evolution of interval vectors are
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Fig. 4 Zonotope approximation
of a polytope

replaced by the bisection and the evolution of zonotopes [11], where the initial admissi-
ble domain is broadened from boxes to zonotopes and the wrapping effect is reduced by
using the zonotope evolution instead of the interval evolution. It is worthy to note that the
zonotopes used are transformed to be the format of polytopes using zonotope construction
and thus the test of inclusion in Step 4 and the test of intersection in Step 5 can be
fulfilled by polytope geometry softwares such as Multi-Parametric Toolbox [22]. Since the
bisection of a zonotope with redundant line segment generators is not complete, an alternative
approach is to bound the zonotope with redundant line segment generators by a zonotope with
linearly independent line segment generators at first and thus the bisection of the bounding
zonotope is complete. The bounding of a zonotope with redundant line segment generators
can be realized by using singular value decomposition of the matrix H [23]. Furthermore,
an initial admissible polytope can also be bounded by a zonotope with linearly independent
line segment generators using the center of the largest ball inscribed in the polytope as the
center of the bounding zonotope [22]. A direct application of the solver of set inversion via
zonotope geometry in Table I is shown in Fig. 4, where a polytope is approximated innerly
by a union of zonotopes using a bounding zonotope of the polytope as the initial admissible
domain.

6 Global optimization for set inversion via zonotope geometry

Given an initial interval matrix M ∈ I(Rn×m), its width is denoted to be:

Width(M) = max
i, j

Width(Mi j ), i = 1, . . . , n, j = 1, . . . , m, (15)

where Width(Mi j ) is denoted to be the width of the interval Mi j . The interval matrix M can
also be bisected into two sub-interval matrix LM and RM by bisecting the widest member of
its components. Using the bisection and the selection of M, the solver of global optimization
via interval analysis for set inversion via zonotope geometry can be built to search the maximal
control invariant zonotope for a constrained nonlinear discrete-time system with a related
local stabilizing linear feedback control law u = kx, just as shown in Algorithm II, where
Vol(·) stands for the volume of a zonotope and ε is the bound of error tolerance.
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Algorithm II: Global Optimization For Set Inversion (GOFSI)

1. Initialize Stack = M and Z = ∅;
2. while Stack �= ∅
3. Pop out an interval matrix Mk from Stack;
4. Set Zk = MkBm and test if �(Zk ) is control invariant or no by

SIVZG;

5. if �(Zk ) is control invariant and Vol(�(Zk )) > Vol(Z), Z = �(Zk )

and return to 2;

6. elseif Width(M) ≤ ε, return to 2;

7. else

8. Bisect Mk to LMk and RMk, push them on Stack;
9. endif

10.endwhile

The solver of global optimization via interval analysis for set inversion via zonotope
geometry in Algorithm II searches the maximal control invariant zonotope starting from an
initial zonotope derived from an initial interval matrix M, where the input of the algorithm is
M and the output of the algorithm is Z. The selection of such an initial interval matrix M for
the search should include the stability domain of the dynamic system under the related local
stabilizing control law. The zonotope inclusion of each family of zonotopes represented by
Zk = MkBm is passed to the solver of set inversion via zonotope geometry for the test of
control invariance with the related local stabilizing linear feedback control law, where the
input of Algorithm I is X = T = �(Zk). Through the bisection and the selection of the
initial interval matrix M globally, the algorithm can return the control invariant zonotope
with the maximal volume, where the volumes of zonotopes can be computed analytically
once zonotopes are transformed to be the format of polytopes [24]. It is worthy to note that
the complexity and the volume of the obtained maximal control invariant zonotope Z is
closely related to the dimension and the value of the selected initial interval matrix M. The
complexity of the algorithm increases with the dimension and the range of the selected initial
interval matrix M. Furthermore, other kinds of local stabilizing feedback control laws can
be applied as well because the solver of set inversion via zonotope geometry is applicable
to a whatever nonlinear autonomous system with first-order differentiability for deriving its
centered inclusion function.

7 An illustrative example

This section gives an illustrative example for the application of the solver of set inversion
via zonotope geometry and the solver of global optimization for set inversion to design the
maximal control invariant zonotope for a constrained nonlinear discrete-time system, i.e.,
the solver of global optimization for set inversion via zonotope geometry searches from an
initial zonotope derived from an interval matrix M to find the control invariant zonotope Z
with the maximal volume.

Taking the highly nonlinear model of a Continuous Stirred-Tank Reactor (CSTR) as the
example [10], assuming constant liquid volume, the CSTR for an exothermic, irreversible
reaction, A → B, is described by the following dynamic model based on a component
balance for the reactant A and an energy balance:
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⎧
⎪⎪⎨

⎪⎪⎩

ĊA = q

V

(
CA f − CA

) − k0 exp

(

− E

RT

)

CA,

Ṫ = q

V
(T f − T ) + (− �H)

ρC p
k0 exp

(

− E

RT

)

CA + U A

VρC p
(Tc − T ) ,

(16)

where CA is the concentration of A in the reactor, T is the reactor temperature and Tc is
the temperature of the coolant stream. The constraints are 280 K ≤ Tc ≤ 370 K, 280 K ≤ T ≤
370 K and 0 ≤ CA ≤ 1 mol/l. The nominal operating conditions, which correspond to an
unstable equilibrium Ceq

A = 0.5 mol/l, T eq = 350 K, T eq
c = 300 K are: q = 100 l/ min, CA f =

1 mol/l, T f = 350 K, V = 100 l, ρ = 1000 g/l, C p = 0.239 J/g K, �H = − 5 × 104 J/mol,
E/R = 8750 K, k0 = 7.2 × 1010 min−1, U A = 5 × 104J/ min K. The corresponding non-
linear discrete-time state-space model is obtained by defining the state vector x = [CA −
Ceq

A (T − T eq)/100]T , the manipulated input u = (Tc − T eq
c )/100 and by discretizing

the ODE with a sampling time �t = 0.03 min. The purpose of adding the scaling factor for
the temperature is to make the value of CA −Ceq

A and (T −T eq)/100 comparable and thus the
error tolerance for the bisections of them could be the same. A local stabilizing linear feed-
back control law u = [−0.0690−4.3387]x is designed in advance according to the linearized
model and the LQ method discussed in [10]. With the designed local stabilizing linear feed-

back control law, an optimal control invariant zonotope Z =
[

0.03 −0.01 0.02 0
0.01 0.01 0 0.02

]

B4 is

obtained through the solver of global optimization for set inversion via zonotope geometry,

where the initial interval matrix for the search is selected to be M =
[ [0, 0.04] [−0.04, 0]

[0, 0.04] [0, 0.04]
]

;

the bound of error tolerance for global optimization is selected to be ε = 0.005 while the
bound of error tolerance for set inversion is selected to be ε = 0.05. The overall computation
time for the simulation using MATLAB is 2244.7 seconds on a Pentium Centrino 1.4 GHz
Notebook. The optimal control invariant zonotope along with its bisection is shown in Fig. 5,
where the coordinate system is transformed to be original so as to compare with the control
invariant ellipse designed in [10]. It is worthy to note that the volume of the designed control
invariant zonotope is 0.8, which is much bigger than the control invariant ellipse (Its vol-
ume is 0.1606) designed in [10]. The obtained zonotope can be demonstrated geometrically
to be control invariant using the solver of set inversion via zonotope geometry, where the
evolutions of the sub-zonotopes under the related local stabilizing feedback control law are
within the original zonotope, just as shown in Fig. 6. The designed control invariant zonotope
and the related local stabilizing linear feedback control law can be utilized as the terminal
set and the terminal control law in the terminal control of the dual-mode MPC, where the
control target is to drive the system state into the terminal set using receding horizon control

Fig. 5 The bisection of
the optimal zonotope
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Fig. 6 The evolution of each
sub-zonotope of the optimal
zonotope

Fig. 7 The control process of
the dual-mode MPC

strategy when the system state is outside the terminal set and the related local stabilizing
linear feedback control law is applied instead once the system state enters into the terminal
set, just as demonstrated in Fig. 7 for the initial state x0 = [0.42 333]T .

8 Conclusions

Zonotopes are centrally symmetric convex polytopes with implicit representations of line
segment generators. The solver of set inversion via interval analysis has been extended to
set inversion via zonotope geometry using the proposed method of bisecting zonotopes.
The extended solver is further combined with the solver of global optimization via interval
analysis to design control invariant sets for constrained nonlinear discrete-time systems in
a numerical way. Using zonotopes, numerical tools for nonlinear systems such as interval
analysis and numerical tools for linear systems such as polytope geometry are unified in the
same framework of convex sets and it is anticipated that the proposed generalization from
interval analysis to zonotope geometry could be helpful for more practical problems than the
design of control invariant sets for constrained nonlinear discrete-time systems.
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